Diadenosine polyphosphates facilitate the evoked release of acetylcholine from rat hippocampal nerve terminals.
نویسندگان
چکیده
Diadenosine polyphosphates are present in synaptic vesicles, are released upon nerve stimulation and possess membrane receptors, namely in presynaptic terminals. However, the role of diadenosine polyphosphates to control neurotransmitter release in the CNS is not known. We now show that diadenosine pentaphosphate (Ap(5)A, 3-100 microM) facilitated in a concentration dependent manner the evoked release of acetylcholine from hippocampal nerve terminals, with a maximal facilitatory effect of 116% obtained with 30 microM Ap(5)A. The selective diadenosine polyphosphate receptor antagonist, diinosine pentaphosphate (Ip(5)I, 1 microM), inhibited by 75% the facilitatory effect of Ap(5)A (30 microM), whereas the P(2) receptor antagonists, suramin (100 microM) and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 10 microM) only caused a 18-24% inhibition, the adenosine A(1) receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (20 nM), caused a 36% inhibition and the adenosine A(2A) receptor antagonist, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo [2,3-a][1,3, 5]triazin-5-ylamino]ethyl)phenol (ZM 241385, 20 nM), was devoid of effect. These results show that diadenosine polyphosphates act as neuromodulators in the CNS, facilitating the evoked release of acetylcholine mainly through activation of diadenosine polyphosphate receptors.
منابع مشابه
Nicotinic receptor-evoked hippocampal norepinephrine release is highly sensitive to inhibition by isoflurane.
BACKGROUND Inhaled anaesthetics (IAs) produce multiple dose-dependent behavioural effects including amnesia, hypnosis, and immobility in response to painful stimuli that are mediated by distinct anatomical, cellular, and molecular mechanisms. Amnesia is produced at lower anaesthetic concentrations compared with hypnosis or immobility. Nicotinic acetylcholine receptors (nAChRs) modulate hippocam...
متن کاملCerebellar Giant Synaptosomes: a Model to Study Basal and Stimulated Release of [3H]gamma-Aminobutyric Acid
Background: Neurotransmitter release is an essential link in cell communication of the nervous system. Many investigations have focused on gamma amino butyric acid (GABA)-ergic neurotransmission, because it has been implicated in the pathophysiology of several central nervous system disorders. To bypass complications related to homo- and heterosynaptic modulation and to avoid indirect interpret...
متن کاملModulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملModulation of hippocampal acetylcholine release: a potent central action of interleukin-2.
The potential of the T-cell growth factor interleukin-2 (IL-2) to modulate the release of ACh from rat hippocampus was studied in vitro, as a means to investigate the possible functional significance of this cytokine in the CNS. Hippocampal slices were superfused with Krebs' buffer medium, and endogenous ACh released into the superfusate was measured using a radioenzymatic assay. Recombinant hu...
متن کاملDeprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy
Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 879 1-2 شماره
صفحات -
تاریخ انتشار 2000